Bundelkhand Institute of Engineering & Technology, Jhansi Short Term Tender Notice No. BIET- 1/2017

The tender documents for the **Purchase of Equipment of Electrical Engg. Deptt.** Tender can be downloaded from the website, <u>www.bietjhs.ac.in</u> or can be obtained from the store & purchase section. A separate demand draft for the cost of tender documents is required along with tender documents.

Tender opening and submission details are given below

1. Name of firm with contact number & Email address

- 2. Tender cost (Non refundable) is Rs. 2300/-
- 3. Tender submission is up to 28.03.2017 at 2:00 PM
- 4. Tender opening on 28.03.2017 at 2:30 P.M.
- 5. Opening place of tender is conference room, administrative block BIET Jhansi.

Signature & Seal of Tenderer

Bundelkhand Institute of Engineering & Technology, JHANSI (U.P.)

Department: Electrical Engineering

Particular of EMD

LAB	Lab	EMD (In Rupees)
No.		
EE-1		
	Electrical Engineering Laboratory	10,000
EE-2		
	Electromechanical Energy Conversion Lab – I	13,000
EE-3	Electrical Measurement Lab	5,000
EE-4	Electromechanical Energy Conversion Lab – II	9,000
EE-5	Network Lab	3,000
EE-6	Electrical Instrumentation lab	5,000
EE-7	Power Electronics Lab	6,000
EE-8	Power system lab	30,000
EE-9	Electric drive lab	10,000

Detail of Specification of Electrical Engineering Laboratory

Sr. No	NAME OF EQUIPMENT	QTY.	Rates in Rupees	Cost in Rupees
1.	Complete Setup For performing :- <i>Verification of Kirchhoff's laws (KVL/KCL)</i>	02	Kupees	Rupees
2.	Complete Setup For performing :- Verification of (i) Superposition theorem (ii) Thevenin's Theorem (iii) Maximum Power Transfer Theorem.	02		
3.	Complete Setup For performing :- <i>Measurement of power and power factor in a single phase ac series inductive circuit and study improvement of power factor using capacitor</i>	02		
4.	Complete Setup For performing :- Study of phenomenon of resonance in RLC series circuit and obtain resonant frequency.	02		
5.	Complete Setup For performing :- Measurement of power in 3- phase circuit by two wattmeter method and determination of its power factor.	02		
6.	Complete Setup For performing :- Determination of parameters of ac single phase series RLC circuit	02		
7.	Complete Setup For performing :- Determination of (i) Voltage ratio (ii) polarity and (iii) efficiency by load test of a single phase transformer	02		
8.	Complete Setup For performing :- To measure energy by a single phase energy meter and determine error.	02		
9.	Complete Setup For performing :- To study P-N diode characteristics	02		
10.	Complete Setup For performing :- <i>To study full wave and half wave rectifier circuits with and without capacitor and determine ripple factors.</i>	02		
11.	Complete Setup For performing :- <i>To study various logic gates (TTL)</i>	02		
12.	Complete Setup For performing :- <i>To study Operational Amplifier as Adder and Sub tractor</i>	02		
13.	Complete Setup For performing :- <i>To study transistor as a switch.</i>	02		
14.	Rheostat up to 2000 Ohm,10Amp	10		
15.	DC Regulated Power Supply 0-30 Volt, 5Amp.	05		
16.	Bread Board With Power Supply \pm 0-15 Volt in Box	05		
17.	Digital Multi-meter	05		
18.	C.R.O. up to 30 MHz	10		
19.	Complete Setup For performing :- <i>To Plot V-I characteristics of junction diode and zener diode.</i>	02		
	TOTAL			

ELECTROMECHANICAL ENERGY CONVERSION LAB – I

Sr. No.	NAME OF EQUIPMENT	QTY.	Rates in rupees	Cost in Rupees
1.	Complete Setup For performing :-	1		
	To obtain magnetization characteristics of a DC Shunt			
	Generator			
	MACHINES REQUIRED			
	D.C. Shunt Motor, 2 HP, 230 V, 1500 RPM, (Prime Mover)			
	flexibly coupled to Shunt Generator 1.0 KW (self-excited).			
	Both the machines flexibly coupled and mounted on M S			
	channel base.			
	D.C. SHUNT MOTOR :			
	Type: DC Motor, shunt wound, self-excited, screen protected,			
	horizontal foot mounted, fan cooled, provided with inter poles			
	with DC starter face plate type.			
	Capacity : 2 HP			
	Winding : Shunt wound.			
	R.P.M. : 1500			
	Volts. : 230			
	Insulation : Class 'B'			
	Connections: All the terminals of armature and shunt field			
	shall be brought over to a Bakelite sheet, fixed to C.I. terminal			
	box, fitted on top of Motor.			
	D.C. SHUNT GENERATOR :			
	Type: DC Generator, Shunt wound, self-excited, screen			
	protected, horizontal foot mounted, and fan cooled, provided			
	with inter poles.			
	-			
	R.P.M. : 1500 Volts. : 230			
	Insulation : Class 'B'			
	Connections: All the terminals of armature and shunt field			
	shall be brought over to a Bakelite sheet, fixed to C.I. terminal box, fitted on top of Motor.			
	Both the machines are flexibly coupled and mounted on			
	sturdy m.s. channel base. The terminals of armature, shunt and			
	series field windings of both the machines shall be brought			
	over to Bakelite plate fixed on C.I. terminal box fitted on top			
	of machine.			
	CONTROL PANEL FOR MG SET : DC SHUNT			
	MOTOR & DC SHUNT GENERATOR			
	With			
	All Measuring instruments required as per Experiment (Fitted			
	on Engraved Bakelite sheet enclosed in almirah type M S			
	box with lock & handle arrangement suitable for table			
	mounting.)			
2.	Complete Setup For performing :-	1		
	To obtain load characteristics of a D.C shunt generator and			
	compound generator (a)Cumulatively			
	compounded (b) Differentially compounded			
	D.C. Power supply			
	Fixed : 200 V			
	Variable : 0-200 V			
	DC Machine			
	Type : DC Shunt			

	Rating	: 1 HP			1 1
	RPM	: 1500 (No Load)			
	Tachometer	:20,000 RPM			
	With	.20,000 KI M			
		ments required as per Experiment			
		Bakelite sheet enclosed in almirah type			
		& handle arrangement suitable for table			
		a nancie arrangement suitable for table			
3.	mounting.)		1		
з.	Complete Setup For	of a dc shunt machine using Swinburne's	1		
	00 \$	Swinburne test of DC			
	test Machine:-	Swindurne test of DC			
		200 V Fined DC			
	Input Supply	: 200 V Fixed DC			
	DC Mashing and it	: 0-200 V Variable DC			
	DC Machine specifie				
	Туре	: DC Shunt			
	Rating	: 1 HP			
	Voltage Rating	: 200 Volt			
	RPM	: 1500 (No Load)			
	With				
		ments required as per Experiment			
		Bakelite sheet enclosed in almirah type			
		& handle arrangement suitable for table			
	mounting.)				
4.	Complete Setup For		1		
		m's test and determine losses and			
	efficiency of DC mac				
	Hopkinsontest of D				
	Input Supply	: 200 V Fixed DC			
		: 0-200 V Variable DC			
	DC Machine specifi				
		are flexibly coupled and mounted on a			
		t as a Motor Generator set.			
	Туре	: DC Shunt			
	Rating	: 1 HP			
	Voltage Rating				
	RPM	: 1500 (No Load)			
	Insulation	: Class B			
	With				
		ments required as per Experiment			
		Bakelite sheet enclosed in almirah type			
		& handle arrangement suitable for table			
	mounting.)	<u> </u>			
5.	Complete Setup For		1		
		ntrol of dc shunt motor using (a)			
	armature resistance of				
		rque characteristics of a dc shunt			
	motor. D.C. Power su				
	Fixed	: 200 V			
	Variable	: 0-200 V			
	DC Machine				
	Туре	: DC Shunt			
	Rating	: 1 HP			
	RPM	: 1500 (No Load)			
	Tachometer	:20,000 RPM			
	With			1	1

					-
		ments required as per Experiment			
		Bakelite sheet enclosed in almirah type			
		& handle arrangement suitable for table			
	mounting.)				
6.	Complete Setup For		1		
	To obtain speed cont	rol of dc separately excited motor using			
		Leonard/ Static Ward –Leonard			
	method.Ward Leona	ard Method of DC Machine:-			
	Main Supply	: Three Phase ,415 Volt			
	Machine Specificati				
		are flexibly coupled and mounted on a			
		ct as a Motor Generator set.			
		uirrel Cage Induction Motor acts as a			
	Prime Mover	uniter Cage induction wrotor acts as a			
		:1 HP			
	Rating Value Dating				
	Voltage Rating	:415 Volt			
	RPM	:1440 (No Load)			
1	Insulation	:Class B			
1	DC Shunt Motor				
	Rating	:1 HP			
	Voltage Rating	:200 Volt			
	RPM	:1500 (No Load)			
	Insulation	:Class B			
	Extra DC Shunt Mo	otor 200 Volt for which the speed can			
	be controlled using	Motor Generator set.			
	Rating	:1/2 HP			
	Voltage Rating	:200 Volt			
	RPM	:1500 (No Load)			
	Insulation	:Class B			
	With				
		ments required as per Experiment			
		Bakelite sheet enclosed in almirah type			
		& handle arrangement suitable for table			
	mounting.)				
7.	Complete Setup For	· performing ·-	1		
/.		and ratio test of single phase and 3-phase	I		
	transformers.	ina rano iesi of single phase ana 5-phase			
		valent circuit, efficiency and voltage			
	• • •	e phase transformer using O.C. and S.C.			
	tests.	now and waltages negative of a single			
		ncy and voltage regulation of a single			
	phase transformer by	Sumpner's test.			
	• • •	atio And O.C. & S.C. Test On 3 Phase			
	Transformer	DL			
		Phase,3 kVA, 400/230V, 50 Hz, air			
		e wound with tapings at 50% on primary			
		used in M S box with rubber footings. All			
		rimary & secondary winding with tapings			
		r to insulated Bakelite sheet fixed on top			
		ransformer can be CORE type.			
	CONTROL PANEI				
	Fitted on ENGRAV	ED Bakelite sheet enclosed in almirah			
1	type M S box with lo	ck & handle			
	Arrangement suitable	e for table mounting.			
	1. MI Ammeter 96 x				
				•	•

		1 1	
2. MI A	nmeter 96 x 96 mm 0-10A 2 Nos.		
3. MI V	oltmeter 96 x 96 mm 0- 300 V 2 Nos.		
4. MI V	oltmeter 96 x 96 mm 0- 600 V 2 Nos.		
5. Educa	tional type Insulating Terminals		
	ting Light		
7. TP M	6 6		
	Vattmeter 2.5/5 Amp 150/300/600V 2 Nos.		
	•		
	nal Accessories		
3 Phase	Variac 0-470V 1 No.		
0.000			
	CIRCUIT AND SHORT CIRCUIT TESTS ON		
	E PHASE TRANSFORMER		
	INE REQUIRED		
	hase Transformer 1 KVA, 230/230V with Tapings at		
50% &	86.6% Naturally Air Cooled Copper Double wound,		
Shell ty	be. The transformer will be housed in MS sheet box		
enclosur	e with rubber footings. All the terminals of primary &		
seconda	y shall be brought over to Bakelite sheet fitted on top		
	x through insulated terminals.		
	OL PANEL FOR EXPERIMENT		
	n Bakelite sheet enclosed in almirah type M S box		
	x & and e arrangement suitable for table mounting.		
	bltmeter 96 x 96 mm Sq 0-300V 1 No.		
	oltmeter 96 x 96 mm Sq 0-300 V 1 No.		
	nmeter 96 x 96 mm Sq 0-30 V 1 No.		
	nmeter 96 x 96 mm Sq 0-1A 1 No.		
-	Phase Single Element Dynamo type Wattmeter 1		
No.			
	np, 75/150/300V Portable UPF type		
-	Phase Single Element Dynamo type Wattmeter 1		
No.			
	, 75/150/300V Portable LPF type		
7. Single	Phase Variac Air Cooled 0-270V, 1No.		
	TAIN EFFICIENCY & REGULATION OF A		
SINGL	E PHASE TRANSFORMER BY SUMPNER'S		
	<u>TO BACK) TEST</u>		
MACH	NE REQUIRED FOR EXPERIMENT		
	Single Phase Transformer 1 KVA, 230/230V with		
	at 50% & 86.6% Naturally Air Cooled Copper		
	wound, Shell type. The transformer will be housed in		
	et box enclosure with rubber footings. All the		
	s of primary & secondary shall be brought over to		
	sheet fitted on top of the box through insulated		
terminal			
	S. COL PANEL FOR EXPERIMENT		
	Engraved Bakelite sheet enclosed in almirah type M		
	th lock & handle arrangement		
	ę		
	for table mounting.		
	oltmeter 96 x 96 mm 0-300V 1 No.		
	oltmeter 96 x 96 mm 0-600V 1 No.		
	oltmeter 96 x 96 mm 0-30V 1 No.		
4. MI A	nmeter 96 x 96 mm 0-5A2 No.		
5. Single	Phase Single Element Dynamo type 1 No.		
	er 2.5/5A, 75/150/300V		
	Phase Variac Air Cooled 0-270V, 1No.		
c. singi		1 I	I

8.	Complete Setup For performing :-	1	
	To obtain 3-phase to 2-phase conversion by Scott connection.		
	TO STUDY THREE PHASE TO TWO PHASE		
	CONVERSION OF 3 PHASE		
	TRANSFORMER BY SCOTT CONNECTION		
	MACHINE REQUIRED FOR EXPERIMENT		
	2 Nos Single Phase Transformer 1 KVA,230/230V with		
	Tapings at 50% & 86.6% Naturally Air Cooled		
	Copper Double wound, Shell type. The transformer will be		
	housed in MS sheet box enclosure with rubber footings. All		
	the terminals of primary & secondary shall be brought over to		
	Bakelite sheet fitted on top of the box through insulated		
	terminals.		
	CONTROL PANEL FOR EXPERIMENT		
	Fitted on Engraved Bakelite sheet enclosed in almirah type M		
	S box with lock & handle arrangement suitable for table		
	mounting.		
	1. MI Voltmeter 96 x 96 mm 0-300V 1 No.		
	2. MI Voltmeter 96 x 96 mm 0-600V 1 No.		
	3. MI Ammeter 96 x 96 mm 0-5A 5 No.		
	4. Three Phase Variac Air Cooled 0-270V, 1No		
	5. Electrical Load 5 KW, 230V with dual output		
	1 No.		
	portable trolley mounted with castor wheels		
	Total		

ELECTRICAL MEASUREMENT LAB

Sr. No.	NAME OF EQUIPMENT	QTY.	Rates in Rupees	Cost in Rupees
•	Complete Setup For performing :-	02		
	Calibration of ac voltmeter and ac ammeter Apparatus required :-			
	 Portable M.I. Voltmeter (for calibration) 0-250 V - 1 No. Portable M.I. Voltmeter (Standard) 0-300 V - 1 No. 			
	3. Single Phase Variac 0-6 A - 1 No.4. M.I. Ammeter (for calibration) 0-2.5 A - 1 No.			
	5. Portable M.I. Ammeter (Standard) 0-10 A - 1 No.6. Lamp Bank Load			
•	Complete Setup For performing :- Measurement of form factor of a rectified sine wave and determine source of error if r.m.s. value is measured by a multi-meter	02		
•	Complete Setup For performing :- <i>Measurement of phase difference and frequency of a</i> <i>sinusoidal ac voltage using C.R.O.</i>	02		

•	Complete Setup For performing :-	02	
	Measurement of power and power factor of a single phase	-	
	inductive load and to study effect of capacitance connected		
	across the load on the power factor		
	Apparatus required :-		
	1. M.I. Voltmeter 0-300 V - 1 No.		
	2. M.I. Ammeter 0-5 A - 2 Nos.		
	3. M.I. Ammeter 0-10 A - 1 No.		
	4. Single Phase Inductive Load (Choke Coil) 0-6A - 1 No		
	5. Single Phase Variac 0-8 A - 1 No.		
	6. Wire wound Rheostat 5 A, 45 Ohms - 1 No.		
•	Complete Setup For performing :-	02	
	Measurement of low resistance by Kelvin's double bridge		
•	Complete Setup For performing :-	02	
	Measurement of voltage, current and resistance using dc		
	potentiometer		
•	Complete Setup For performing :-	02	
	Measurement of inductance by Maxwell's bridge		
٠	Complete Setup For performing :-	02	
	Measurement of inductance by Hay's bridge		
•	Complete Setup For performing :-	02	
	Measurement of inductance by Anderson's bridge		
•	Complete Setup For performing :-	02	
	Measurement of capacitance by Owen's bridge		
•	Complete Setup For performing :-	02	
	Measurement of capacitance by De Sauty bridge		
•	Complete Setup For performing :-	02	
	Measurement of capacitance by Schering bridge		
•	Complete Setup For performing :-	02	
	Study of Frequency and differential time counter		
•	C.R.O. up to 30 Mhz	02	
	Total		

ELECTROMECHANICAL ENERGY CONVERSION LAB – II

Sr. No.	NAME OF EQUIPMENT	QTY.	Rates in Rupees	Cost in
			-	Rupees
1.	Complete Setup For performing :-	1		
	1. To perform no load and blocked rotor tests on a three phase			
	squirrel cage induction motor and determine equivalent			
	circuit.			
	2. To perform load test on a three phase induction motor and			
	draw.			
	3. Torque -speed characteristics.			
	<i>4. Power factor-line current characteristics.</i>			
	5. To study speed control of three phase inductionmotor by			
	Keeping V/f ratio constant Three Phase Induction Motor			
	Trainer :-			
	Main Supply : Three Phase			
	415 V ±10%,50Hz			
	Motor's Specification			
	Type : Squirrel Cage			
	Rating : 1HP			

	RPM :1440 (No Load)		
	With All M		
	All Measuring instruments required as per Experiment		
	(Fitted on Engraved Bakelite sheet enclosed in almirah type M		
	S box with lock & handle arrangement suitable for table		
	mounting.)		
2.	Complete Setup For performing: -To perform no load and	1	
	blocked rotor tests on a single phase induction motor and		
	determine equivalent circuit.		
	Single Phase Induction Motor Trainer :-		
	Induction Motor		
	Type :Capacitor		
	Phase : Single		
	Current Type : AC		
	Rating :1 HP		
	Voltage rating : $230 \text{ V} \pm 10\%,50 \text{ Hz}$		
	MCB :10A		
	Tachometer:20,000 RPM		
	Mains Supply : $230 \text{ V} \pm 10\%, 50 \text{Hz}$		
	With		
	All Measuring instruments required as per Experiment		
	(Fitted on Engraved Bakelite sheet enclosed in almirah type		
	ms box with lock & handle arrangement suitable for table		
	mounting.)		
3.	Complete Setup For performing :-	1	
	To study speed control of three phase induction motor by	-	
	varying supply voltage		
	Three Phase Variac(0- 440 V ±10%,50Hz)		
	With Voltmeter and Ammeter		
	Motor's Specification		
	Туре : 3-ФSquirrel Cage		
	Rating : 1HP		
	RPM :1440 (No Load)		
	Tachometer :20,000 RPM		
	With		
	All Measuring instruments required as per Experiment		
	(Fitted on Engraved Bakelite sheet enclosed in almirah type M		
	S box with lock & handle arrangement suitable for table		
	mounting.)		
4.	Complete Setup For performing :-	1	
	To perform open circuit and short circuit tests on a three phase		
	alternator and determine voltage regulation at full load and at		
	unity, 0.8 lagging and leading power factors by (i) EMF		
	method (ii) MMF method.		
	Three Phase Synchronous Generator Trainer :-		
	Input Supply :200 V Fixed DC		
	0-200 V Variable DC		
	Machine Specification (2 Nos.)		
	Deth the Mashine and first line court of the		
	Both the Machine are flexibly coupled and mounted on a		
	M.S. channel base		
	DC Machine acts as a Prime Mover		
1	Type : DC Shunt		
	Rating : 2 HP		

Valtara Dating		
Voltage Rating : 200 Volt		
RPM: 1500 (No Load)Insulation: Class B		
Three Phase Synchronous Motor act as GeneratorType:Salient Pole Motor		
Current type :AC		
Rating :3 HP		
Excitation Voltage :120 V		
Voltage rating $: 415 \text{ V} \pm 10\%$		
With		
All Measuring instruments required as per Experiment		
(Fitted on Engraved Bakelite sheet enclosed in almirah type M		
S box with lock & handle arrangement suitable for table		
mounting.)		
5. Complete Setup For performing :-	1	
<i>To determine V-curves and inverted V-curves of a three phase</i>	1	
synchronous motor.		
Three Phase Synchronous Generator Trainer :-		
Input Supply : Three Phase 415		
$\pm 10\%,50$ Hz		
Machine Specification (2 Nos.)		
Both the Machine are flexibly coupled and mounted on a		
M.S. channel base		
Three Phase Synchronous Motor Type		
:Salient Pole Motor		
Current type :AC		
Rating :3 HP		
Excitation Voltage :120 V		
Voltage rating $: 415 \text{ V} \pm 10\%$		
DC Machine		
Type : DC Shunt		
Rating : 2 HP		
Voltage Rating : 200 Volt		
RPM : 1500 (No Load)		
Insulation : Class B		
With		
All Measuring instruments required as per Experiment		
(Fitted on Engraved Bakelite sheet enclosed in almirah type M		
S box with lock & handle arrangement suitable for table		
mounting.)		
6. Complete Setup For performing :-	1	
To determine Xd and Xq of a three phase salient pole		
synchronous machine using the slip test and draw the power-		
angle curve.		
Three Phase Synchronous Machine		
Type :Salient Pole Motor		
Current type :AC		
Rating :3 HP		
Voltage rating $: 415 \text{ V} \pm 10\%$		
With		
All Measuring instruments required as per Experiment		
(Fitted on Engraved Bakelite sheet enclosed in almirah type M		
S box with lock & handle arrangement suitable for table		
mounting.)		
Total		

Network Lab

Sr. No.	NAME OF EQUIPMENT	QTY.	Rates in Rupees	Cost in Rupees
1.	Complete Setup For performing :-	02		
	Verification of principle of superposition with dc and ac	02		
	sources.			
	1. Experimental kit fitted with :-			
	(a) Bread Board – 01			
	(b) Voltage Source -02			
	(c) Current Source -01			
	2. Instrument ModuleORMultimeters			
	3. Carbon Resistances :-			
	(a) 1 KW $-$ 05			
	(a) $1 \text{ KW} = 05$ (b) $2 \text{ KW} = 05$ (c) $5 \text{ KW} = 05$			
	(c) $5 \text{ KW} = 05$ (d) $10 \text{ KW} = 05$			
	4. Patch Cords			
2.	Complete Setup For performing :-	02		
4.	Verification of Thevenin, Norton and Maximum power	02		
	<i>transfer theorems in ac circuits</i> (i) Variable AC Voltage Source – 2 Nos.			
	(ii) Variable AC Current Source – 1 No.			
	(iii) Inductors -2 Nos.			
	(iv) Capacitors – 6 Nos.			
	(v) Fixed Resistances – 8 Nos.			
	(vi) Variable Resistance – 2 Nos.			
	(vii) Digital Multimeters			
3.	Complete Setup For performing :-	02		
	Verification of Tellegin's theorem for two networks of the			
	same topology			
4.	Complete Setup For performing :-	02		
	Determination of transient response of current in RL and RC			
	circuits with step voltage input			
	(i) DC Voltage Source			
	(ii) Resistances – 5 Nos.			
	(iii) Capacitances – 3 Nos.			
	(iv) Inductors – 2 Nos.			
5.	Complete Setup For performing :-	02		
	Determination of transient response of current in RLC circuit			
	with step voltage input for underdamp,			
	critically damp and overdamp cases			
	(i) DC Voltage Source			
	(ii) Resistances – 5 Nos.			
	(iii) Capacitances – 3 Nos.			
	(iv) Inductors – 2 Nos.			
6.	Complete Setup For performing :-	02		
	Determination of frequency response of current in RLC			
	circuit with sinusoidal ac input			
	(i) DC Voltage Source			
	(ii) Resistances – 5 Nos.			
	(iii) Capacitances – 3 Nos.			
	(iv) Inductors – 2 Nos.			

	(v) AF Oscillator 1 KHz		
7.	Complete Setup For performing :- Determination of z and h parameters (dc only) for a network and computation of Y and ABCD parameters	02	
8.	Complete Setup For performing :- Determination of driving point and transfer functions of a two port ladder network and verify with theoretical values	02	
9.	Complete Setup For performing :- Determination of image impedance and characteristic impedance of T and Π networks, using O.C. and S.C. tests Write Demo for the following (in MS-Power point)	02	
10.	Complete Setup For performing :- Verification of parameter properties in inter-connected two port networks: series, parallel and cascade also study loading effect in cascade.	02	
11.	Complete Setup For performing :-Determination of frequency response of a Twin – T notchfilter.(i) AF Signal Generator 1 KHz(ii) Resistances - 10 Nos(iii) Capacitances – 10 Nos.	02	
12.	Complete Setup For performing :- To determine attenuation characteristics of a low pass / high pass active filters.	02	
	Total		

Electrical Instrumentation Lab

Sr.	NAME OF EQUIPMENT	QTY.	Rates in	Cost in
No.	(Experiment Setup/Kit)		Rupees	Rupees
1.	Complete Setup For performing :-	02	•	
	Measurement of displacement using LVDT.			
2.	Complete Setup For performing :-	02		
	Measurement of displacement using strain gauge based			
	displacement transducer.			
3.	Complete Setup For performing :-	02		
	Measurement of displacement using magnetic pickup.			
4.	Complete Setup For performing :-	02		
	Measurement of load using strain gauge based load cell.			
5.	Complete Setup For performing :-	02		
	Measurement of water level using strain gauge based water			
	level transducer			
6.	Complete Setup For performing :-	02		
	Measurement of flow rate by anemometer			
7.	Complete Setup For performing :-	02		
	Measurement of temperature by RTD.			
8.	Complete Setup For performing :-	02		
	Measurement of temperature by thermocouple			
9.	Complete Setup For performing :-	02		
	Study of P,PI and PID controllers			
10.	Complete Setup For performing :-	02		
	Study of storage oscilloscope and determination of transient			
	response of RLC circuit.			
11.	Complete Setup For performing :-	02		
	Determination of characteristics of a solid state sensor/fiber-			
	optic sensor			
12.	Complete Setup For performing :-	02		
	Design and test a signal conditioning circuit for any			
	transducer			
	Total			

Power Electronics Lab

Sr.	NAME OF EQUIPMENT	QTY.	Rates in	Cost in
No.			Rupees	Rupees
1.	Complete Setup For performing :- <i>To study V-1 characteristics of SCR and measure latching and</i> <i>holding currents.</i> Complete setup with digital measuring instruments. • Demonstration board with following facilities :- (a) Isolated 0-230 V DC variable source – 1 Set (b) Isolated 0-600 V DC variable source – 1 Set (c) Isolated 0-12 V DC variable source – 2 Sets (d) External Load – 3 Nos. (e) SCR • Multimeter • Lamp 15 Watt 230 V – 2 Nos. • Patch Cords. • Demonstration Board Cover. • To conduct SCR Shorted gate experiment • To conduct biased (Forward & Reverse) gate SCR firing experiments	02		
2.	Set of Patch Chords & Manual. Complete Setup For performing :-	02		
	 To study UJT trigger circuit for half wave and full wave control. Setup will consists of :- Demonstration Board with following facilities :- (a) Isolated AC 230 V & 14 V Supply (b) 10:1 Resistive Attenuator for observation on CRO. (c) Fuse for short circuit protection. 25 Watt 250 V Lamp. Demonstration Board Cover Triggering circuits Set of Patch Chords & Manual 			
3.	Complete Setup For performing :- To study single-phase half wave controlled rectified with (i) resistive load (ii) inductive load with and without freewheeling diode. The setup is provided with isolation transformer for C.R.O. protections and lamp bank. 1. Demonstration Board with following facilities :- (a) Single Phase Half Controlled Bridge (b) Firing Pulse Generator (c) Resistive Load (Lamp) (d) Inductive Load (Choke) (e) Voltmeter 0-300V (f) Ammeter 0-5A (g) 1:10 Attenuator for CRO (h) Isolated 220 V AC for CRO 2. DC Motor 1 HP 3. Connecting Leads 4. Lamp Holder	01		

	5. Lamp 250 Volts		
	Complete experimental setup with DC Motor & Engraved		
	Panel board with Banana Sockets for ease of connections by		
	students		
4.	Complete Setup For performing :-	02	
	To study single phase (i) fully controlled (ii) half controlled	•=	
	bridge rectifiers with resistive and		
	Inductive loads.		
	Features :-		
	· 230V, AC Isolated Transformer, Power 50 Watt		
	• 9V DC at 100 mA Zener Regulated Power Supply		
	• Two UJT.		
	· Two Pulse Transformer1:1:1.		
	• Two Potentiometers for controlling UJT firing angle.		
	• Bulb 40W, 230 AC		
	• Adequate no of others Electronics Components.		
5.	Complete Setup For performing :-	01	
	To study three-phase fully/half controlled bridge rectifier with	U1	
	resistive and inductive loads.		
	Features :-		
	• Three Phase line commuted fully-controlled thyristorized		
	bridge converter.		
	• Miniature Circuit Breaker (MCB).		
	• Three cards consisting of Zero Crossing Detector, Integrator,		
	Comparator and Pulse Generator		
	one for each phase, for controlling thyristors. Another card in		
	conjunction with above three		
	cards for controlling the triggering angles of the negative		
	group of three thyristors.		
	· Firing angle control potentiometer.		
	· 415:50V transformer for rectification and low voltage AC		
	supply for triggering.		
	• 12V at 500mA, power supply for triggering circuit.		
	· Six nos. Driver Circuits with Pulse Transformer.		
	· R & L load with Load voltage divider.		
	· Panel meter for measurement of voltage & current.		
	· One freewheel diode.		
	· Unearthed mains sockets for CRO.		
6.	Complete Setup For performing :-	02	
	To study single-phase ac voltage regulator with resistive and		
	inductive loads.		
	Complete setup with fraction Horse Power Motor.		
	· AC Phase Control training unit with following facilities :-		
	(a) Isolated 230 V or 50 V supply		
	(b) Fuse for Short Circuit protection		
	(c) AC Phase control by RC Triggering		
	(d) AC Phase Control by UJT Triggering		
	(e) 10:1 Potential Divider for CRO		
	· Protection Cover - 1 No.		
	 Lamp 25 Watt, 230 V - 1 No. Set of Patch Chords & Manual. 		
	Complete setup with Motor		

7.	Complete Setup For performing :-	01	
7.	To study single phase cyclo-converter	01	
	The experimental setup consists of :-		
	(i) Power Circuit consisting of two fully controlled		
	Bridge Converter connected in anti		
	Parallel (Bridges P & N). Bridge P supplies load		
	current in the positive half of output		
	cycle and bridge N provides load current in the		
	negative half of output cycle.		
	(ii) Firing Circuit consists of Micro Controller Based		
	Firing Unit which provides Isolated		
	Gate pulses through pulse transformers separately for		
	P & N Bridges. Toggle switch is		
	provided to select the output frequency $(1/1f, 1/2f, 1/2f, 1/2f, 1/2f)$		
	1/3f, 1/4f, 1/5f). Firing angle can be		
	changed either :-		
	a) through toggle switches for increasing and		
	decreasing of firing angle. Firing		
	angle during all half cycles of AC input supply		
	remains same in this mode of		
	control.		
	b) through serial port of computer by connector		
	provided on the experimental kit		
	to the serial port of computer and than entering the		
	firing angle to the key board.		
	In this mode of control the firing angle of each half		
	cycle of input supply can be		
	independently controlled.		
	(iii) Patch Cord.		
	(iv) Instruction Manual		
8.	Complete Setup For performing :-	02	
	To study triggering of (i) IGBT (ii) MOSFET (iii) power		
	transistor		
	1. Complete experimental setup consisting		
	demonstration Board with following facilities :-		
	(a) 110 V DC Supply (b) Different testing points		
	(b) Different testing points		
	(c) 1:10 Attenuator for CRO		
	(d) Triggering Generator		
	(e) IGBT, Mosfet& Power Transistor		
	2. Lamp 15 Watt 250V		
9.	3. Connecting Leads Complete Setup For performing :-	01	
у.	To study operation of IGBT/MOSFET chopper circuit	01	
	This is DC chopper circuit for getting a variable DC		
	voltage by using on time control and		
	frequency control to feed DC (Universal Motor).		
	Circuit demonstrate the use of smooth speed		
	variation with the help of chopper circuit and test		
	points are provided.		
L	pointo are provided.		

	1. Demonstration Board with following facilities :-		
	(a) 110 V DC Supply		
	(b) Different testing points		
	(c) 1:10 Attenuator for CRO		
	(d) DC Voltmeter		
	(e) DC Amp Meter		
	2. Lamp 60 Watt 250V		
	3. Connecting Leads		
10.	Complete Setup For performing :-	01	
	To study MOSFET/IGBT based single-phase series-resonant		
	inverter.		
	Complete experimental setup consisting of :-		
	1. Demonstration Board with following facilities :-		
	(a) Isolated DC 110 V		
	(b) Isolated Gate Frequency		
	(c) External Load		
	(d) 200 W Lamp for Short Circuit Protection		
	(e) 1:10 Resistive Attenuator		
	(f) 1A Fuse for short circuit protection.		
	2. Demonstration Board Cover		
	3. Patch Cords		
	All the circuit diagram and necessary test point are		
	clearly marked on Engraved front panel for		
	education study purpose.		
11.	Complete Setup For performing :-	01	
	To study MOSFET/IGBT based single-phase bridge inverter.		
	Consisting of :-		
	1. Demonstration Board with following facilities :-		
	(a) Isolated DC 110 V.		
	(b) Isolated Gate Frequency		
	(c) External Load		
	(d) 200 W Lamp for Short Circuit Protection		
	(e) 1:10 Resistive Attenuator		
	(f) 1A Fuse for short circuit protection.		
	2. Demonstration Board Cover		
	3. Patch Cords		
	All the circuit diagram and necessary test point are		
	clearly marked on Engraved front panel for		
	education study purpose. Supplied		
	Total		

POWER SYSTEM LAB

S NO.	NAME OF EQUIPMENT	QTY.	Rates in Rupees	Cost in Rupees
1.	Complete Setup For performing :-	02	Kupees	Kupees
1.	To determine negative and zero sequence reactance of	02		
	an alternator.			
	MACHINES REOUIRED			
	M G Set: DC SHUNT MOTOR/3 PHASE			
	ALTERNATOR SALIENT POLE TYPE (ROTATING			
	FIELD)			
	DC Motor			
	Type.: DC Shunt wound, screen protected. Horizontal foot mounted, with interpoles and 3 points DC Starter			
	Capacity: 3HP			
	RPM : 1500 (controlled variation)			
	Volts : 230			
	Insulation : Class 'B'			
	Cooling : Fan cooled			
	Connections : Shunt, all the terminals of Armature and			
	x field winding shall be brought over to a bakelite sheet			
	Alternator :			
	Type : Salient pole type (Rotating Field type), 3 ph 4			
	wire screen protected, horizontal foot mounted, fan			
	cooled, separately excited			
	Capacity : 2 KVA			
	RPM : 1500 for max output and frequency of 50 Hz			
	Volts : 415V			
	Insulation : Class 'B'			
	Frequency : 50 Hz			
	Power factor : 0.8 p.f. lagging			
	Exciter			
	Type : Static type through Rectifier			
	With			
	All Measuring instruments required as per Experiment			
	(Fitted on ms box suitable for table mounting.)			
2.	Complete Setup For performing :- <i>To determine direct axis reactance (xd) and quadrature axis</i>	02		
	reactance (x_a) of a salient pole alternator.			
	MACHINES REOUIRED			
	M G Set: DC SHUNT MOTOR/3 PHASE ALTERNATOR			
	SALIENT POLE TYPE (ROTATING FIELD)			
	```´`´			

[	DOM		
	<b>DC Motor</b> Type.: DC Shunt wound, screen protected. Horizontal foot		
	mounted, with interpoles and 3 points DC Starter.		
	Capacity : 3HP		
	RPM : 1500 (controlled variation)		
	Volts : 230		
	Insulation : Class 'B'		
	Cooling : Fan cooled		
	Connections : Shunt, all the terminals of Armature and x		
	field winding shall be brought over to a bakelite sheet .		
	Alternator :		
	Type : Salient pole type (Rotating Field type), 3 ph 4 wire		
	screen protected, horizontal foot mounted, fan cooled.		
	Capacity : 2 KVA		
	RPM : 1500 for max output and frequency of 50 Hz		
	Volts : 415V		
	Insulation : Class 'B'		
	Frequency : 50 Hz		
	Power factor : 0.8 p.f. lagging		
	Connections : 3 phase 4 wire		
	<u>Excitor</u>		
	Type : D.C Shunt Generator or Rectifier, 220V, DC through		
	sliprings.		
	With		
	All Measuring instruments required as per Experiment		
	(Fitted on ms box suitable for table mounting.)		
	Additional Accessories Required 3 Phase Variac, 0-470V,		
3.	Complete Setup For performing :-	02	
5.	To determine sub transient direct axis reactance (xd) and	02	
	sub transient quadrature axis reactance (xq) of an		
	alternator		
	MACHINES REOUIRED		
	M G Set: DC SHUNT MOTOR/3 PHASE ALTERNATOR		
	SALIENT POLE TYPE (ROTATING FIELD)		
	<b>DC Motor</b> Type.: DC Shunt wound, screen protected. Horizontal foot		
	mounted		
	Capacity : 3HP		
	RPM : 1500		
	Volts : 230		
	Cooling : Fan cooled		
	C		
	Alternator : Type : Salient pole type (Rotating Field type), 3 ph 4 wire		
L	Type . Suttent pole type (Rotating Field type), 5 pli 4 wile		1

	screen protected, horizontal foot mounted		
	Capacity : 2 KVA		
	RPM : 1500 for max output and frequency of 50 Hz		
	Volts : 415V		
	Insulation : Class 'B'		
	Frequency : 50 Hz		
	Excitor		
	Type : D.C Shunt Generator or Rectifier, 220V		
	With		
	All Measuring instruments required as per Experiment		
	(Fitted on ms box suitable for table mounting.)		
4.	Complete Setup For performing :-	02	
	To determine fault current for L-G, L-L, L-L-G and L-L-L		
	<i>faults at the terminals of an alternator at very low excitation</i> <u>MACHINES REQUIRED</u> :		
	M G Set : D C SHUNT MOTOR/3 PHASE		
	ALTERNATOR SALIENT POLE TYPE (ROTATING		
	FIELD)		
	<b>DC Motor</b> Type.: DC Shunt wound, screen protected. Horizontal foot		
	mounted		
	Capacity : 3HP		
	RPM : 1500		
	Volts : 230		
	Cooling : Fan cooled		
	<u>Alternator :</u>		
	Type : Salient pole type (Rotating Field type), 3 ph 4 wire screen protected, horizontal foot mounted		
	Capacity : 2 KVA		
	RPM : 1500 for max output and frequency of 50 Hz		
	Volts : 415V		
	Frequency : 50 Hz		
	Connections : 3 phase 4 wire		
	Excitor Type : Static type through Rectifier		
	With		
	All Measuring instruments required as per Experiment		
	(Fitted on ms box suitable for table mounting.)		
5.	Complete Setup For performing :-	02	
	To study the IDMT over current relay and determine the		
	time current characteristics APPARATUS REQUIRED		
	IDMT over current relay		
	<u>With</u>		
	All Measuring instruments required as per Experiment		

	(Fitted on ms box suitable for table mounting.)		
6.	Complete Setup For performing :-	02	
	To study percentage differential relay		
	APPARATUS REQUIRED		
	All Measuring instruments required as per Experiment		
	(Fitted on ms box suitable for table mounting.)		
7.	Complete Setup For performing :-	02	
	To determine location of fault in a cable using cable fault		
	locator		
	APPARATUS REQUIRED		
	CABLE FAULT LOCATOR		
	Complete experimental setup consisting of Rheostat,		
	Galvanometer, Measuring Tape, 3 Core Cable, DC Power		
	Source, Digital Measuring Instrument		
8.	Complete Setup For performing :-	02	
0.	To study ferranty effect and voltage distribution in H.V.	02	
	long transmission line using transmission line model.		
	APPARATUS REQUIRED		
	Complete Experimental satup as per requirement of the		
	Experiment, fitted in m.s. sheet box complete with patch		
	cords for inter connection & Manual.		
9.	Complete Setup For performing :-	02	
	To study operation of oil testing set.		
	APPARATUS REQUIRED		
	Complete Experimental satup as per requirement of the		
	Experiment, with testing kit and sample of oil.		
10.	Complete Setup For performing :-	02	
	To study Impedance, MHO and Reactance type distance		
	relays		
	APPARATUS REQUIRED		
	Complete Experimental setup as per requirement of the		
	Experiment, fitted in m.s. sheet box complete with patch		
	cords for inter connection & Manual.		
		Total	

#### **Electric Drives Lab**

Sr. No.	NAME OF EQUIPMENT	QTY.	Rates in Rupees	Cost in Rupees
1.	Complete Setup For performing :-	01		
	To study speed control of separately excited dc motor by	•-		
	varying armature voltage using single-phase fully controlled			
	bridge converter.			
	1. Engraved Demonstration Board with following facilities :-			
	(a) Single Phase Fully Controlled Bridge			
	(b) Firing Pulse Generator Digital type			
	(c) Resistive Load (Lamp) With & without free wheeling			
	Diode			
	(d) Inductive Load (Choke)			
	(e) Voltmeter 0-300V			
	(f) Ammeter 0-5A			
	(g) 1:10 Attenuator for CRO			
	(h) Isolated 220 V AC for CRO			
	2. DC Motor 1 HP			
	3. Connecting Leads			
	4. Lamp Holder			
	5. Lamp 250 Volts			
	Complete experimental setup with DC Motor			
	Engraved Panel board with Banana Sockets forease of			
	connections by students			
2.	Complete Setup For performing :-	01		
2.	To study speed control of separately excited dc motor by	01		
	varying armature voltage using single phase half controlled			
	bridge converter.			
	Demonstration Board with following facilities :-			
	(a) Single Phase Half Controlled Bridge			
	(b) Firing Pulse Generator			
	(c) Resistive Load (Lamp)			
	(d) Inductive Load (Choke)			
	(e) Voltmeter 0-300V			
	(f) Ammeter 0-5A			
	(g) 1:10 Attenuator for CRO			
	(h) Isolated 220 V AC for CRO			
	2. DC Motor 1 HP			
	3. Connecting Leads			
	4. Lamp Holder			
	5. Lamp 250 Volts			
3.	Complete Setup For performing :-	01		
5.	To study speed control of separately excited dc motor using	U1		
	single phase dual converter (Static Ward-Leonard Control)			
	(i) Power Circuit consisting of two single phase fully			
	controlled Bridge Converter			
	connected in anti parallel.			
	(ii) Centre Tap Inductor required for circulating mode			
	operation of dual converter.			
	(iii) Micro controlled based firing circuit which generates			
	firing pulses for both P and N			
	converters.			
	(iv) MCB, Voltmeter, Ammeter and Lamp load			
	(v) Patch Cord & Instruction Manual			
	(vi) DC Motor 1 HP, 230V			

^	Complete Setur Four	Δ1		
4.	Complete Setup For performing :-	01		
	To study speed control of separately excited dc motor using			
	MOSFET/IGBT chopper			
	1. Demonstration Board with following facilities :-			
	(a) 110 V DC Supply			
	(b) Different testing points			
	(c) 1:10 Attenuator for CRO			
	(d) DC Voltmeter			
	(e) DC Amp Meter			
	2. Lamp 60 Watt 250V			
_	3. Connecting Leads			
5.	Complete Setup For performing :-	01		
	To study closed loop control of separately excited dc motor			
6.	<b>Complete Setup For performing :-</b>	01		
	To study speed control of single phase induction motor using			
	single phase ac voltage controller			
	The experimental setup consisting of :-			
	(i) Micro Controller Kit with firing circuit.			
	(ii) Single Phase Induction Motor Capacitor Run with			
	Loading arrangement			
	(iii) Patch Cord.			
	(iv) Instruction Manual			
	With AC Motor 0.5 HP, FHP Single Phase with loading			
	arrangement			
7.	Complete Setup For performing :-	01		
	To study speed control of three phase induction motor using			
	three phase ac voltage controller			
	3 phase, 415 volt 1.0 HP squirrel cage induction motor drive			
	by Micro Control Based firing angle			
	alongwith motor-generating set. Consisting of AC Induction			
	Motor 1 HP 415 V, 1440 RPM coupled			
	to DC Shunt Generator 230V with lamp bank load.			
	DESCRIPTION			
	1. This unit consists of two parts :-			
	(a) <b>Power Circuit</b> :- It consist of 6 Thyristors connected in			
	anti-parallel (2SCRs in each			
	phase). By controlling the firing angle of the thyristors			
	connected in anti-parallel in each			
	phase, the rms value of the stator voltage can be regulated. As			
	a consequence, motor torque			
	and thus speed of the drive is controlled.			
	(b) <b>Control Circuit</b> :- FCR-100 (8051) microcontroller based SCR Bridge controller is			
	used for controlling the firing circuit.			
	2. Soft push buttons provided for increasing or decreasing the			
	firing angle.			
	3. 3-phase MCB			
	4. LCD display of the firing angle.			
	5. 10:1 Attenuator with Isolation Transformer for observation			
	of wave form on CRO.			
	With AC Induction Motor 1 HP 415 V, 1440 RPM			
	coupled to DC Shunt Generator 230V with lamp bank load.			
8.	<b>Complete Setup For performing :-</b>	01		
	To study speed control of three phase induction motor using			
	three phase current source inverter			
9.	<b>Complete Setup For performing :-</b>	01		

	To study speed control of three phase induction motor using		
	three phase voltage source inverter		
10.	Complete Setup For performing :- To study speed control of three phase slip ring induction motor using static rotor resistance control using rectifier and chopper (a) Power Circuit : This part consists of a 3-phase bridge rectifier to convert 3-phase rotor supply to DC supply. An indicator is connected in series with the DC supply for smoothning of a DC. A Glass fuse is connected in series with the DC supply. An IGBT is provided for chopper control MOSFET is mounted on a proper heat sink. Snubber circuit is connected across MOSFET for dv/dt. A fuse is also provided for protection. All the points are brought out on the front panel for interconnection. (b) Control Circuit :The control circuit generates driver output for driving the MOSFET in chopper mode. The duty cycle can be varied from 0% to 90%. The frequency can be varied.	01	
11.	Soft start and soft stop is provided for driver outputComplete Setup For performing :-To study speed control of three phase slip ring inductionmotor using static scherbius slip power recovery controlscheme1 HP Induction Motor Slipring Type for demonstration ofspeed variation of induction motor.Ammeter/Voltmeter provided alongwith the set up.Electronic Controller includes Power Supply, Firing, Circuit,Contactor, SCR Bridge Inverter and 6diode bridge converter for rotor side. DV/DT protection forThyristors included.	01	
	Total		

Signature & Seal of Tenderer

### Submission of the Tender:

- 1. Sealed tenders in along with earnest money amounting to the value mentioned with each item in the tender document in form of demand draft only. The tenders should reach to undersigned latest by 28 March up to 2: OO P. M.
- 2. Tenders should be submitted either in person or by post in sealed envelopes on which the name of department, item quoted; tender number and date along with name and address of the firm will be written.
- 3. Tender cost (non refundable) (ii) Earnest Money (iii) Proof of PAN and TIN registration document (iv) Standing of the firm (v) Major supplies executed in recent past (vi) Authorized dealer certificate from OEM & Commercial terms and conditions. The rates must be quoted in both figures and words. Any overwriting and/or cutting must be duly attested failing which tenders are likely to be rejected.
- 4. Tender Cost and Earnest money amounting to the value given in the tender document for each Lab should also be submitted with the tender in the form of separate Demand Drafts drawn in favour of Director, BIET, Jhansi.
- 5. Earnest money and Cost of Tender in the form of Bank Drafts must be placed in a separate sealed envelope by writing "Earnest Money" on top of the envelope.
- 6. All the envelopes as above must be kept and sealed in a big envelop. The name of items quoted, enquiry/tender no and the opening date should invariably be mentioned on the top of big envelope.
- 7. Sealed tenders should be sent to Director, Bundelkhand Institute of Engineering and Technology (BIET) Campus, Kanpur Road, Jhansi -284128 latest by 28 March at 2: 00 P.M. . The sealed tenders may be dropped in the box kept at Store and Purchase section at BIET, Jhansi.

### Terms and Conditions for Submission of Tenders

- 1. Firms will have to attach the list of customers to whom they have supplied similar items in previous year along with performance reports. Total turnover of the firm must be atleast 50 Lacs per year in the last three years consecutive years. A certificate to these effects should be issued from the sales tax department.
- 2. The descriptive and illustrative literature of the quoted item in original must accompany with the tender.
- 3. Tenders received after the closing date and stipulated time shall not be considered and the institute shall not be responsible for any postal delay.
- 4. Tender should be valid atleast for a period of 04 months. (04 Months from opening date of tender).
- 5. Our terms of payments are strictly after receipt of material and check at our institute regarding the quality and working experience.
- 6. The rates should be quoted FOR store, Bundelkhand Institute of Engineering and Technology (BIET) Campus, Kanpur Road, Jhansi -284128. Inclusive of all taxes/excise duty/fright/package/forwarding expenses/insurance etc.
- 7. Firm shall be solely responsible for defective supplies and losses caused to institute on account of defective supply.
- 8. Tenders brought personally should be dropped into tender box.
- 9. Suppliers must be registered with sales tax department and they should state registration no.
- 10. Quantity of items may increase or decrease or may be cancelled upto any extent.
- 11. No sales tax form "C" or "D" etc for concessional rate shall be provided by the institute.

- 12. All tender must be accompanied by EMD as mentioned in the tender document in the form of Demand Draft drawn in favour of Director, Bundelkhand Institute of Engineering and Technology (BIET) Jhansi.
- 13. Tenders deviating from above terms and conditions shall be rejected straight way without assigning any reason thereof.
- 14. EMD will be forfeited if the equipment's are not supplied in given time.
- 15. If required, the firms have to supply the sample of the items.
- 16. If certain equipment/material needs to be checked/tested at site of the firm, all expenditure (including TA/DA) of our expert members shall be borne by the firm concerned.
- 17. Penalty : The firm, which is not able to supply the equipment's/materials mentioned in purchase order by the due date , shall be liable to pay a penalty equal to 0.10 % of the value of purchase order per day. However this can be waived of by the Director under special circumstances.
- 18. **Payment:** Ninety percent of contract price shall be paid to the supplier after the delivery / commissioning / testing and completion of the work. The remaining 10% of contract price shall be paid to the supplier within 30 days after satisfactory working.
- 19. Director has every right to extend the due date if so required but all the tenders will be opened together.
- 20. Deduction of TDS (Income Tax & VAT) as per Govt. Rules.
- 21. The firm must provide original Guarantee/Warrantee card as issued by the manufacturer, as the case may be.
- 22. The Director BIET, Jhansi may reject any or all quotations/tenders without assigning any reasons.
  - 23. All disputes subject to Jhansi Jurisdiction only.

For BIET, Jhansi